金属学报英文版 ›› 2020, Vol. 33 ›› Issue (8): 1124-1134.DOI: 10.1007/s40195-020-01086-0
收稿日期:
2020-03-12
修回日期:
2020-05-11
出版日期:
2020-08-10
发布日期:
2020-08-06
Chengbo Yang1, Jing Zhang1,2(), Meng Li1, Xuejian Liu1
Received:
2020-03-12
Revised:
2020-05-11
Online:
2020-08-10
Published:
2020-08-06
Contact:
Jing Zhang
. [J]. 金属学报英文版, 2020, 33(8): 1124-1134.
Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134.
Fig. 4 TEM images of AlCoFeNiMn alloy annealed at 700 °C: a DFTEM image showing micron-sized grains and precipitates; b SAED pattern of the FCC precipitate and c SAED pattern of the BCC matrix
Fig. 5 TEM images of AlCoFeNiMn alloy annealed at 800 °C: a DFTEM image showing micron-sized grains and precipitates; b SAED pattern of the FCC precipitate and c SAED pattern of the BCC matrix
Fig. 8 HRTEM image showing an area of the matrix close to a precipitate (bottom right) in the alloy sample annealed at 700 °C. The insets show the fast Fourier transform (FFT) patterns of the BCC matrix and FCC precipitate, as well as an inverse FFT (IFFT) image of the matrix. The FFT pattern inset in the IFFT image shows B2 superlattice reflection spots
Fig. 9 SEM images of the AlCoFeMnNi alloys in a as-cast condition and after annealing at b 700 °C, c 800 °C, d 900 °C, e 1000 °C for 10 h. f Variation in the average grain size of the matrix and the volume fraction of the FCC precipitates with annealing temperature
Sample | Phase | Fe (at.%) | Co (at.%) | Ni (at.%) | Al (at.%) | Mn (at.%) |
---|---|---|---|---|---|---|
As-cast | Matrix (B2) | 20.72 ± 0.1 | 20.14 ± 0.2 | 20.07 ± 0.2 | 19.13 ± 0.3 | 19.94 ± 0.5 |
HEA-700 | Matrix (BCC) | 12.33 ± 0.3 | 21.25 ± 0.2 | 24.77 ± 0.2 | 24.26 ± 0.5 | 17.39 ± 0.8 |
Precipitates (FCC) | 27.61 ± 0.3 | 19.11 ± 0.3 | 16.66 ± 0.2 | 9.97 ± 0.2 | 26.65 ± 0.3 | |
HEA-800 | Matrix (BCC) | 12.33 ± 0.4 | 20.30 ± 0.4 | 23.71 ± 0.3 | 25.43 ± 0.1 | 18.23 ± 0.3 |
Precipitates (FCC) | 31.92 ± 0.3 | 20.04 ± 0.3 | 13.36 ± 0.3 | 10.35 ± 0.3 | 24.33 ± 0.3 | |
HEA-900 | Matrix (BCC) | 11.88 ± 0.1 | 20.19 ± 0.3 | 24.10 ± 0.5 | 25.65 ± 0.2 | 18.18 ± 0.3 |
Precipitates (FCC) | 27.81 ± 0.4 | 21.03 ± 0.2 | 16.08 ± 0.3 | 9.65 ± 0.1 | 25.51 ± 0.1 | |
HEA-1000 | Matrix (BCC) | 12.55 ± 0.3 | 21.17 ± 0.3 | 25.37 ± 0.5 | 24.18 ± 0.2 | 16.73 ± 0.1 |
Precipitates (FCC) | 36.15 ± 0.3 | 22.12 ± 0.3 | 10.03 ± 0.5 | 3.98 ± 0.2 | 27.72 ± 0.1 |
Table 1 EDS analysis resultsa of the matrix and precipitates in the as-cast and annealed alloys
Sample | Phase | Fe (at.%) | Co (at.%) | Ni (at.%) | Al (at.%) | Mn (at.%) |
---|---|---|---|---|---|---|
As-cast | Matrix (B2) | 20.72 ± 0.1 | 20.14 ± 0.2 | 20.07 ± 0.2 | 19.13 ± 0.3 | 19.94 ± 0.5 |
HEA-700 | Matrix (BCC) | 12.33 ± 0.3 | 21.25 ± 0.2 | 24.77 ± 0.2 | 24.26 ± 0.5 | 17.39 ± 0.8 |
Precipitates (FCC) | 27.61 ± 0.3 | 19.11 ± 0.3 | 16.66 ± 0.2 | 9.97 ± 0.2 | 26.65 ± 0.3 | |
HEA-800 | Matrix (BCC) | 12.33 ± 0.4 | 20.30 ± 0.4 | 23.71 ± 0.3 | 25.43 ± 0.1 | 18.23 ± 0.3 |
Precipitates (FCC) | 31.92 ± 0.3 | 20.04 ± 0.3 | 13.36 ± 0.3 | 10.35 ± 0.3 | 24.33 ± 0.3 | |
HEA-900 | Matrix (BCC) | 11.88 ± 0.1 | 20.19 ± 0.3 | 24.10 ± 0.5 | 25.65 ± 0.2 | 18.18 ± 0.3 |
Precipitates (FCC) | 27.81 ± 0.4 | 21.03 ± 0.2 | 16.08 ± 0.3 | 9.65 ± 0.1 | 25.51 ± 0.1 | |
HEA-1000 | Matrix (BCC) | 12.55 ± 0.3 | 21.17 ± 0.3 | 25.37 ± 0.5 | 24.18 ± 0.2 | 16.73 ± 0.1 |
Precipitates (FCC) | 36.15 ± 0.3 | 22.12 ± 0.3 | 10.03 ± 0.5 | 3.98 ± 0.2 | 27.72 ± 0.1 |
Sample | Magnetic properties | Compressive properties | |||
---|---|---|---|---|---|
M as (Am2/kg) | H bc (A/m) | σ cy (MPa) | σ dmax (MPa) | ? fp (%) | |
As-cast | 117.56 | 576 | 1365 | 1694 | 15 |
HEA-700 | 86.73 | 501 | 1186 | 2105 | 23 |
HEA-800 | 82.57 | 433 | 1022 | 2539 | 33 |
HEA-900 | 86.92 | 505 | 915 | 2528 | 33 |
HEA-1000 | 99.02 | 527 | 998 | 2321 | 31 |
Table 2 Magnetic and compressive properties of AlCoFeMnNi alloys at 27 °C
Sample | Magnetic properties | Compressive properties | |||
---|---|---|---|---|---|
M as (Am2/kg) | H bc (A/m) | σ cy (MPa) | σ dmax (MPa) | ? fp (%) | |
As-cast | 117.56 | 576 | 1365 | 1694 | 15 |
HEA-700 | 86.73 | 501 | 1186 | 2105 | 23 |
HEA-800 | 82.57 | 433 | 1022 | 2539 | 33 |
HEA-900 | 86.92 | 505 | 915 | 2528 | 33 |
HEA-1000 | 99.02 | 527 | 998 | 2321 | 31 |
Alloy | Structure | M as (Am2/kg) | H bc (A/m) | References |
---|---|---|---|---|
FeCoNiMn0.25Al0.25 | FCC | 268 | 101 | [ |
FeCoNiMnAl | BCC + B2 | 147.86 | 629 | [ |
FeCoNiMnGa | FCC | 80.43 | 915 | [ |
FeCoNiMn | FCC | 18.14 | 119 | [ |
FeCoNiCr | FCC | 13.95 | 1252.1 | [ |
FeCoNiCrCuAl | FCC + BCC | 46 | 3582 | [ |
FeCoNiCrAl | BCC | 64 | 1273 | [ |
FeCoNiCrAl1.25 | BCC | 43.05 | 1416 | [ |
FeCoNiMnSn | FCC | 80 | 3435 | [ |
FeCoNiMnCr | FCC | 1.39 | 10,804 | [ |
FeCoNiAl0.2Si0.2 | FCC | 131 | 1508 | [ |
FeCoNiAlCu | FCC | 84 | 12,892 | [ |
Fe29Ni29Co28Cu7Ti7 | FCC + BCC | 111.54 | 266.65 | [ |
Table 3 Comparison of the soft-magnetic properties of as-cast high-entropy alloys
Alloy | Structure | M as (Am2/kg) | H bc (A/m) | References |
---|---|---|---|---|
FeCoNiMn0.25Al0.25 | FCC | 268 | 101 | [ |
FeCoNiMnAl | BCC + B2 | 147.86 | 629 | [ |
FeCoNiMnGa | FCC | 80.43 | 915 | [ |
FeCoNiMn | FCC | 18.14 | 119 | [ |
FeCoNiCr | FCC | 13.95 | 1252.1 | [ |
FeCoNiCrCuAl | FCC + BCC | 46 | 3582 | [ |
FeCoNiCrAl | BCC | 64 | 1273 | [ |
FeCoNiCrAl1.25 | BCC | 43.05 | 1416 | [ |
FeCoNiMnSn | FCC | 80 | 3435 | [ |
FeCoNiMnCr | FCC | 1.39 | 10,804 | [ |
FeCoNiAl0.2Si0.2 | FCC | 131 | 1508 | [ |
FeCoNiAlCu | FCC | 84 | 12,892 | [ |
Fe29Ni29Co28Cu7Ti7 | FCC + BCC | 111.54 | 266.65 | [ |
[1] |
O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)
URL PMID |
[2] |
T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018)
DOI URL |
[3] | G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, Mater. 481, 234 (2019) |
[4] | G.V. Kurlyandskaya, S.V. Shcherbinin, S.O. Volchkov, S.M. Bhagat, E. Calle, R. Pérez, M. Vazquez, Mater. 459, 154 (2018) |
[5] | H. Li, A. He, A. Wang, L. Xie, Q. Li, C. Zhao, G. Zhang, P. Chen, Mater. 471, 110 (2019) |
[6] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[7] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[8] |
E.J. Pickering, N.G. Jones, Int. Mater. Rev. 61, 183 (2016)
DOI URL |
[9] |
Z. Li, H. Xu, Y. Gu, M. Pan, L. Yu, X. Tan, X. Hou, J. Alloys Compd. 746, 285 (2018)
DOI URL |
[10] |
Z. Li, C. Wang, L. Yu, Y. Gu, M. Pan, X. Tan, H. Xu, Entropy 20, 872 (2018)
DOI URL |
[11] |
X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019)
DOI URL |
[12] |
Y. Ikeda, B. Grabowski, F. Kömann, Mater. Charact. 147, 464 (2019)
DOI URL |
[13] |
C.H. Chang, P.W. Li, Q.Q. Wu, M.H. Wang, C.C. Sung, C.-Y. Hsu, Mater. Technol. 34, 343 (2019)
DOI URL |
[14] |
C. Chen, N. Liu, P. Zhou, H. Xiang, Mater. Sci. Forum 944, 169 (2019)
DOI URL |
[15] |
A. Emamifar, B. Sadeghi, P. Cavaliere, H. Ziaei, Powder Metall. 62, 61 (2019)
DOI URL |
[16] |
A. Esfandiarpour, M.N. Nasrabadi, Intermetallics 104, 59 (2019)
DOI URL |
[17] | Z. Fu, B.E. MacDonald, T.C. Monson, B. Zheng, W. Chen, E.J. Lavernia, J. Mater. Res. 37, 1 (2018) |
[18] |
T. Borkar, V. Chaudhary, B. Gwalani, D. Choudhuri, C.V. Mikler, V. Soni, T. Alam, R.V. Ramanujan, R. Banerjee, Adv. Eng. Mater. 19, 1700048 (2017)
DOI URL |
[19] |
Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, L.Y. Yu, J. Alloys Compd. 693, 1061 (2017)
DOI URL |
[20] |
T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, Acta Mater. 116, 63 (2016)
DOI URL |
[21] |
S. Huang, W. Li, X. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, L. Vitos, Mater. Des. 103, 71 (2016)
DOI URL |
[22] |
C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Curr. Opin. Solid State Mater. Sci. 21, 299 (2017)
DOI URL |
[23] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)
URL PMID |
[24] |
A. Karati, K. Guruvidyathri, V.S. Hariharan, B.S. Murty, Scr. Mater. 162, 465 (2019)
DOI URL |
[25] |
C.H. Liebscher, V.R. Radmilović, U. Dahmen, N.Q. Vo, D.C. Dunand, M. Asta, G. Ghosh, Acta Mater. 92, 220 (2015)
DOI URL |
[26] |
V. Alijani, S. Ouardi, G.H. Fecher, J. Winterlik, S.S. Naghavi, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda, K. Kobayashi, Phys. Rev. B 84, 224416 (2011)
DOI URL |
[27] |
T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017)
DOI URL |
[28] |
P. Li, A. Wang, C.T. Liu, J. Alloys Compd. 694, 55 (2017)
DOI URL |
[29] |
R. Wei, H. Sun, C. Chen, Z. Han, F. Li, J. Magn. Magn. Mater. 435, 184 (2017)
DOI URL |
[30] |
R. Kulkarni, B.S. Murty, V. Srinivas, J. Alloys Compd. 746, 194 (2018)
DOI URL |
[31] |
V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011)
DOI URL |
[32] |
R.H. Yu, S. Basu, Y.F. Li, Y. Zhang, G.C. Hadjipanayis, B.E. Lorenz, J.Q. Xiao, J. Magn. Soc. Jpn. 23, 397 (1999)
DOI URL |
[33] |
G. Herzer, IEEE Trans. Magn. 26, 1397 (1990)
DOI URL |
[34] |
S.G. Ma, Y. Zhang, Mater. Sci. Eng., A 532, 480 (2012)
DOI URL |
[35] |
Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, J. Alloys Compd. 509, 1607 (2011)
DOI URL |
[36] |
C. Li, Y. Ma, J. Hao, Y. Yan, Q. Wang, C. Dong, P.K. Liaw, Mater. Sci. Eng., A 737, 286 (2018)
DOI URL |
[37] | C. Shang, E. Axinte, W. Ge, Z. Zhang, Y. Wang, Surf. Interfaces 9, 36 (2017) |
[38] |
S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Ultramicroscopy 111, 619 (2011)
DOI URL PMID |
[39] |
O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, A. Dlouhý, Phys. Rev. B 96, 014437 (2017)
DOI URL |
[40] |
J. Wang, J. Li, J. Wang, F. Bu, H. Kou, C. Li, P. Zhang, E. Beaugnon, Entropy 20, 275 (2018)
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||