金属学报英文版 ›› 2015, Vol. 28 ›› Issue (5): 567-578.DOI: 10.1007/s40195-015-0233-9
收稿日期:2014-07-31
修回日期:2014-10-28
出版日期:2015-02-15
发布日期:2015-07-23
Received:2014-07-31
Revised:2014-10-28
Online:2015-02-15
Published:2015-07-23
. [J]. 金属学报英文版, 2015, 28(5): 567-578.
Rangasami Chinnusamy. Non-equilibrium Phases Formed in Cu-In-Se-Te System Synthesized by Melt-Quench Method[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 567-578.
Fig. 3 a XRD pattern and the results of Rietveld refinement for CuIn(Se0.1Te0.9), the crosses and the overlying solid line represent the experimental data and the calculated profile, respectively, and the short vertical markers indicate possible Bragg reflections, whereas the bottom curve denotes the difference between the experimental and calculated data, b inset shows the enlarged view of 112 reflection, c inset shows the spectrum in the 2θ range of 80°-130°, on an expanded scale
| hkl | d cal (Å) | I cal (%) |
|---|---|---|
| 101 | 5.5095 | 1.1 |
| 112 | 3.5575 | 100.0 |
| 103 | 3.4207 | 4.3 |
| 211 | 2.6874 | 6.0 |
| 204 | 2.1793 | 47.6 |
| 220 | 2.1768 | 23.0 |
| 301 | 2.0245 | 2.3 |
| 116 | 1.8599 | 15.2 |
| 312 | 1.8568 | 28.2 |
| 323 | 1.5772 | 2.4 |
| 008 | 1.5428 | 3.9 |
| 400 | 1.5393 | 6.2 |
| 316 | 1.4141 | 9.6 |
| 332 | 1.4127 | 4.4 |
| 325 | 1.4044 | 1.6 |
| 228 | 1.2587 | 5.9 |
| 424 | 1.2573 | 10.5 |
| 512 | 1.1850 | 4.3 |
| 408 | 1.0424 | 3.1 |
Table 1 Calculated lattice spacing (d cal), relative intensity (I cal) and Miller indices of selected reflections of CuIn(Se0.1Te0.9)2
| hkl | d cal (Å) | I cal (%) |
|---|---|---|
| 101 | 5.5095 | 1.1 |
| 112 | 3.5575 | 100.0 |
| 103 | 3.4207 | 4.3 |
| 211 | 2.6874 | 6.0 |
| 204 | 2.1793 | 47.6 |
| 220 | 2.1768 | 23.0 |
| 301 | 2.0245 | 2.3 |
| 116 | 1.8599 | 15.2 |
| 312 | 1.8568 | 28.2 |
| 323 | 1.5772 | 2.4 |
| 008 | 1.5428 | 3.9 |
| 400 | 1.5393 | 6.2 |
| 316 | 1.4141 | 9.6 |
| 332 | 1.4127 | 4.4 |
| 325 | 1.4044 | 1.6 |
| 228 | 1.2587 | 5.9 |
| 424 | 1.2573 | 10.5 |
| 512 | 1.1850 | 4.3 |
| 408 | 1.0424 | 3.1 |
Fig. 4 a XRD pattern and the results of Rietveld refinement for CuIn(Se0.5Te0.5)2, the crosses and the overlying solid line represent the experimental data and the calculated profile, respectively, and the short vertical markers indicate possible Bragg reflections, whereas the bottom curve denotes the difference between the experimental and calculated data, b inset shows the enlarged view of 112 reflection, c inset shows the spectrum in the 2θ range of 80°-130°, on an expanded scale
| hkl | CuIn(Se0.35Te0.65)2 | CuIn(Se0.55Te0.45)2 | CuIn(Se0.62Te0.38)2 | |||
|---|---|---|---|---|---|---|
| d cal (Å) | I cal (%) | d cal (Å) | I cal (%) | d cal (Å) | I cal (%) | |
| 101 | 5.4186 | 0.6 | 5.3477 | 3.1 | 5.3078 | 1.1 |
| 112 | 3.4997 | 90.7 | 3.4537 | 100.0 | 3.4273 | 68.6 |
| 103 | 3.3675 | 3.9 | 3.3229 | 4.1 | 3.2956 | 3.3 |
| 211 | 2.6423 | 6.5 | 2.6079 | 6.0 | 2.5890 | 4.9 |
| 204 | 2.1446 | 21.7 | 2.1163 | 47.0 | 2.0996 | 32.3 |
| 220 | 2.1401 | 20.3 | 2.1122 | 22.9 | 2.0971 | 15.5 |
| 301 | 1.9905 | 3.4 | 1.9645 | 2.3 | 1.9504 | 1.5 |
| 116 | 1.8314 | 14.2 | 1.8071 | 14.4 | 1.7919 | 9.9 |
| 312 | 1.8258 | 24.2 | 1.8019 | 27.8 | 1.7888 | 18.0 |
| 323 | 1.5510 | 3.0 | 1.5307 | 2.5 | 1.5194 | 1.8 |
| 008 | 1.5197 | 3.5 | 1.4994 | 3.4 | 1.4864 | 2.3 |
| 400 | 1.5133 | 5.3 | 1.4936 | 6.4 | 1.4829 | 4.0 |
| 316 | 1.3915 | 9.3 | 1.3731 | 9.7 | 1.3623 | 6.7 |
| 332 | 1.3890 | 3.9 | 1.3709 | 4.7 | 1.3610 | 3.0 |
| 325 | 1.3815 | 1.6 | 1.3633 | 1.8 | 1.3530 | 1.2 |
| 228 | 1.2391 | 5.9 | 1.2227 | 6.2 | 1.2127 | 3.9 |
| 424 | 1.2364 | 9.3 | 1.2203 | 11.7 | 1.2112 | 6.8 |
| 512 | 1.1651 | 3.3 | 1.1499 | 4.8 | 1.1416 | 2.9 |
| 512 | 1.1651 | 3.3 | 1.1499 | 4.8 | 1.1416 | 2.9 |
Table 2 Calculated lattice spacing (d cal), relative intensity (I cal) and Miller indices of selected reflections of CuIn(Se0.35Te0.65)2, CuIn(Se0.55Te0.45)2 and CuIn(Se0.62Te0.38)2
| hkl | CuIn(Se0.35Te0.65)2 | CuIn(Se0.55Te0.45)2 | CuIn(Se0.62Te0.38)2 | |||
|---|---|---|---|---|---|---|
| d cal (Å) | I cal (%) | d cal (Å) | I cal (%) | d cal (Å) | I cal (%) | |
| 101 | 5.4186 | 0.6 | 5.3477 | 3.1 | 5.3078 | 1.1 |
| 112 | 3.4997 | 90.7 | 3.4537 | 100.0 | 3.4273 | 68.6 |
| 103 | 3.3675 | 3.9 | 3.3229 | 4.1 | 3.2956 | 3.3 |
| 211 | 2.6423 | 6.5 | 2.6079 | 6.0 | 2.5890 | 4.9 |
| 204 | 2.1446 | 21.7 | 2.1163 | 47.0 | 2.0996 | 32.3 |
| 220 | 2.1401 | 20.3 | 2.1122 | 22.9 | 2.0971 | 15.5 |
| 301 | 1.9905 | 3.4 | 1.9645 | 2.3 | 1.9504 | 1.5 |
| 116 | 1.8314 | 14.2 | 1.8071 | 14.4 | 1.7919 | 9.9 |
| 312 | 1.8258 | 24.2 | 1.8019 | 27.8 | 1.7888 | 18.0 |
| 323 | 1.5510 | 3.0 | 1.5307 | 2.5 | 1.5194 | 1.8 |
| 008 | 1.5197 | 3.5 | 1.4994 | 3.4 | 1.4864 | 2.3 |
| 400 | 1.5133 | 5.3 | 1.4936 | 6.4 | 1.4829 | 4.0 |
| 316 | 1.3915 | 9.3 | 1.3731 | 9.7 | 1.3623 | 6.7 |
| 332 | 1.3890 | 3.9 | 1.3709 | 4.7 | 1.3610 | 3.0 |
| 325 | 1.3815 | 1.6 | 1.3633 | 1.8 | 1.3530 | 1.2 |
| 228 | 1.2391 | 5.9 | 1.2227 | 6.2 | 1.2127 | 3.9 |
| 424 | 1.2364 | 9.3 | 1.2203 | 11.7 | 1.2112 | 6.8 |
| 512 | 1.1651 | 3.3 | 1.1499 | 4.8 | 1.1416 | 2.9 |
| 512 | 1.1651 | 3.3 | 1.1499 | 4.8 | 1.1416 | 2.9 |
| Initial Se content (x) | Number of phases | Se content (x) in individual phase | Phase fraction (%) | a (Å) | c (Å) | Tetragonal distortion (c/2a) | R wp (%) | GOF |
|---|---|---|---|---|---|---|---|---|
| 0.1 | 1 | 0.10 | 100 | 6.15703(26) | 12.34222(65) | 0.99772 | 5.19 | 2.983 |
| 0.2 | 2 | 0.18 | 67 | 6.12237(73) | 12.27821(190) | 0.99727 | 7.82 | 1.003 |
| 0.25 | 33 | 6.09521(71) | 12.21471(209) | 0.99801 | ||||
| 0.4 | 2 | 0.33 | 52 | 6.06921(44) | 12.18564(150) | 0.99612 | 4.83 | 1.483 |
| 0.49 | 48 | 5.99396(34) | 12.02776(146) | 0.99577 | ||||
| 0.5 | 3 | 0.35 | 34 | 6.05305 (58) | 12.15750 (186) | 1.00366 | 3.89 | 1.070 |
| 0.55 | 39 | 5.97425(77) | 11.99530 (256) | 0.99669 | ||||
| 0.62 | 27 | 5.93152 (30) | 11.89101 (136) | 0.99610 | ||||
| 0.6 | 3 | 0.40 | 39 | 6.03299(224) | 12.02198(977) | 0.99765 | 6.92 | 1.003 |
| 0.68 | 26 | 5.91551(104) | 11.89604(406) | 0.99453 | ||||
| 0.74 | 35 | 5.88897(25) | 11.83534(108) | 0.99515 | ||||
| 0.8 | 2 | 0.77 | 62 | 5.88152 (53) | 11.88444 (180) | 0.98978 | 4.19 | 1.573 |
| 0.83 | 38 | 5.83357 (15) | 11.72506 (65) | 0.99506 | ||||
| 0.9 | 2 | 0.87 | 67 | 5.83236(37) | 11.74639(122) | 0.99305 | 5.37 | 1.340 |
| 0.95 | 33 | 5.80642(9) | 11.66750(40) | 0.99532 |
Table 3 Selenium content, phase fraction, lattice parameters and discrepancy factors of CuIn(SexTe1-x)2 system
| Initial Se content (x) | Number of phases | Se content (x) in individual phase | Phase fraction (%) | a (Å) | c (Å) | Tetragonal distortion (c/2a) | R wp (%) | GOF |
|---|---|---|---|---|---|---|---|---|
| 0.1 | 1 | 0.10 | 100 | 6.15703(26) | 12.34222(65) | 0.99772 | 5.19 | 2.983 |
| 0.2 | 2 | 0.18 | 67 | 6.12237(73) | 12.27821(190) | 0.99727 | 7.82 | 1.003 |
| 0.25 | 33 | 6.09521(71) | 12.21471(209) | 0.99801 | ||||
| 0.4 | 2 | 0.33 | 52 | 6.06921(44) | 12.18564(150) | 0.99612 | 4.83 | 1.483 |
| 0.49 | 48 | 5.99396(34) | 12.02776(146) | 0.99577 | ||||
| 0.5 | 3 | 0.35 | 34 | 6.05305 (58) | 12.15750 (186) | 1.00366 | 3.89 | 1.070 |
| 0.55 | 39 | 5.97425(77) | 11.99530 (256) | 0.99669 | ||||
| 0.62 | 27 | 5.93152 (30) | 11.89101 (136) | 0.99610 | ||||
| 0.6 | 3 | 0.40 | 39 | 6.03299(224) | 12.02198(977) | 0.99765 | 6.92 | 1.003 |
| 0.68 | 26 | 5.91551(104) | 11.89604(406) | 0.99453 | ||||
| 0.74 | 35 | 5.88897(25) | 11.83534(108) | 0.99515 | ||||
| 0.8 | 2 | 0.77 | 62 | 5.88152 (53) | 11.88444 (180) | 0.98978 | 4.19 | 1.573 |
| 0.83 | 38 | 5.83357 (15) | 11.72506 (65) | 0.99506 | ||||
| 0.9 | 2 | 0.87 | 67 | 5.83236(37) | 11.74639(122) | 0.99305 | 5.37 | 1.340 |
| 0.95 | 33 | 5.80642(9) | 11.66750(40) | 0.99532 |
| Se content (x) | Anion displacement (μm) | Bond length (Å) | Bond angle (°) | |||||
|---|---|---|---|---|---|---|---|---|
| d (Cu-Se/Te) | d (In-Se/Te) | Cu-Se/Te-Cu | In-Se/Te-In | Se/Te-Cu-Se/Te | Se/Te-In-Se/Te | Cu-Se/Te-In | ||
| 0.10 | 0.22393(30) | 2.5788(10) | 2.7638(11) | 115.36(7) | 104.09(6) | 106.511(33) | 108.155(16) | 109.104(7) |
| 110.971(17) | 112.136(32) | 109.289(16) | ||||||
| 0.18 | 0.2237(4) | 2.5638(14) | 2.7497(16) | 115.44(9) | 104.05(8) | 106.46(5) | 108.152(22) | 109.075(13) |
| 110.999(24) | 112.14(4) | 109.296(9) | ||||||
| 0.25 | 0.2238(4) | 2.5521(14) | 2.7365(16) | 115.39(9) | 104.05(8) | 106.51(5) | 108.139(22) | 109.117(14) |
| 110.973(24) | 112.17(4) | 109.277(10) | ||||||
| 0.33 | 0.21436(29) | 2.5130(9) | 2.7618(11) | 117.64(7) | 102.24(6) | 105.378(32) | 107.709(15) | 108.807(11) |
| 111.556(17) | 113.057(31) | 109.121(8) | ||||||
| 0.35 | 0.21188(25) | 2.4989(8) | 2.7642(10) | 118.24(6) | 101.76(5) | 105.088(29) | 107.593(13) | 108.723(14) |
| 111.706(15) | 113.298(27) | 109.065(8) | ||||||
| 0.40 | 0.2217(4) | 2.5143(17) | 2.7115(19) | 115.73(10) | 103.48(9) | 106.59(7) | 107.887(32) | 109.084(26) |
| 110.930(35) | 112.69(7) | 109.38(5) | ||||||
| 0.49 | 0.22873(29) | 2.5270(9) | 2.6739(11) | 114.28(7) | 105.10(6) | 106.979(32) | 108.431(15) | 109.130(8) |
| 110.731(16) | 111.573(31) | 109.398(16) | ||||||
| 0.55 | 0.23241(25) | 2.5312(9) | 2.6523(9) | 113.46(6) | 105.87(5) | 107.348(30) | 108.638(14) | 109.149(14) |
| 110.543(15) | 111.150(29) | 109.466(7) | ||||||
| 0.62 | 0.21928(25) | 2.4698(8) | 2.6797(9) | 116.44(6) | 103.17(5) | 106.000(28) | 107.919(13) | 109.196(6) |
| 111.234(14) | 112.623(27) | 109.006(9) | ||||||
| 0.68 | 0.2257(4) | 2.4863(14) | 2.6515(16) | 115.03(10) | 104.55(9) | 106.53(5) | 108.332(24) | 108.965(22) |
| 110.960(26) | 111.77(5) | 109.408(13) | ||||||
| 0.74 | 0.2337(4) | 2.5002(14) | 2.6105(15) | 113.19(10) | 106.17(9) | 107.44(5) | 108.734(23) | 109.114(7) |
| 110.495(24) | 110.96(5) | 109.508(6) | ||||||
| 0.77 | 0.21566(27) | 2.4449(8) | 2.6769(10) | 117.50(6) | 102.67(5) | 105.167(31) | 107.937(14) | 109.327(8) |
| 111.665(16) | 112.585(30) | 108.497(12) | ||||||
| 0.83 | 0.23797(27) | 2.4904(9) | 2.5713(9) | 112.25(6) | 107.05(6) | 110.264(15) | 110.500(29) | 109.553(3) |
| 107.897(30) | 108.959(14) | 109.152(4) | ||||||
| 0.87 | 0.2357040(0) | 2.48430(14) | 2.58032(14) | 112.805(3) | 106.633(3) | 110.446(3) | 110.634(7) | 109.587(3) |
| 107.540(7) | 108.893(3) | 109.021(7) | ||||||
| 0.95 | 0.2285370(0) | 2.44849(4) | 2.59204(4) | 114.366(1) | 105.095(1) | 110.781(1) | 111.520(2) | 109.433(1) |
| 106.882(2) | 108.457(1) | 109.053(2) | ||||||
Table 4 Anion displacement, bond length and bond angle of CuIn(SexTe1-x)2 system
| Se content (x) | Anion displacement (μm) | Bond length (Å) | Bond angle (°) | |||||
|---|---|---|---|---|---|---|---|---|
| d (Cu-Se/Te) | d (In-Se/Te) | Cu-Se/Te-Cu | In-Se/Te-In | Se/Te-Cu-Se/Te | Se/Te-In-Se/Te | Cu-Se/Te-In | ||
| 0.10 | 0.22393(30) | 2.5788(10) | 2.7638(11) | 115.36(7) | 104.09(6) | 106.511(33) | 108.155(16) | 109.104(7) |
| 110.971(17) | 112.136(32) | 109.289(16) | ||||||
| 0.18 | 0.2237(4) | 2.5638(14) | 2.7497(16) | 115.44(9) | 104.05(8) | 106.46(5) | 108.152(22) | 109.075(13) |
| 110.999(24) | 112.14(4) | 109.296(9) | ||||||
| 0.25 | 0.2238(4) | 2.5521(14) | 2.7365(16) | 115.39(9) | 104.05(8) | 106.51(5) | 108.139(22) | 109.117(14) |
| 110.973(24) | 112.17(4) | 109.277(10) | ||||||
| 0.33 | 0.21436(29) | 2.5130(9) | 2.7618(11) | 117.64(7) | 102.24(6) | 105.378(32) | 107.709(15) | 108.807(11) |
| 111.556(17) | 113.057(31) | 109.121(8) | ||||||
| 0.35 | 0.21188(25) | 2.4989(8) | 2.7642(10) | 118.24(6) | 101.76(5) | 105.088(29) | 107.593(13) | 108.723(14) |
| 111.706(15) | 113.298(27) | 109.065(8) | ||||||
| 0.40 | 0.2217(4) | 2.5143(17) | 2.7115(19) | 115.73(10) | 103.48(9) | 106.59(7) | 107.887(32) | 109.084(26) |
| 110.930(35) | 112.69(7) | 109.38(5) | ||||||
| 0.49 | 0.22873(29) | 2.5270(9) | 2.6739(11) | 114.28(7) | 105.10(6) | 106.979(32) | 108.431(15) | 109.130(8) |
| 110.731(16) | 111.573(31) | 109.398(16) | ||||||
| 0.55 | 0.23241(25) | 2.5312(9) | 2.6523(9) | 113.46(6) | 105.87(5) | 107.348(30) | 108.638(14) | 109.149(14) |
| 110.543(15) | 111.150(29) | 109.466(7) | ||||||
| 0.62 | 0.21928(25) | 2.4698(8) | 2.6797(9) | 116.44(6) | 103.17(5) | 106.000(28) | 107.919(13) | 109.196(6) |
| 111.234(14) | 112.623(27) | 109.006(9) | ||||||
| 0.68 | 0.2257(4) | 2.4863(14) | 2.6515(16) | 115.03(10) | 104.55(9) | 106.53(5) | 108.332(24) | 108.965(22) |
| 110.960(26) | 111.77(5) | 109.408(13) | ||||||
| 0.74 | 0.2337(4) | 2.5002(14) | 2.6105(15) | 113.19(10) | 106.17(9) | 107.44(5) | 108.734(23) | 109.114(7) |
| 110.495(24) | 110.96(5) | 109.508(6) | ||||||
| 0.77 | 0.21566(27) | 2.4449(8) | 2.6769(10) | 117.50(6) | 102.67(5) | 105.167(31) | 107.937(14) | 109.327(8) |
| 111.665(16) | 112.585(30) | 108.497(12) | ||||||
| 0.83 | 0.23797(27) | 2.4904(9) | 2.5713(9) | 112.25(6) | 107.05(6) | 110.264(15) | 110.500(29) | 109.553(3) |
| 107.897(30) | 108.959(14) | 109.152(4) | ||||||
| 0.87 | 0.2357040(0) | 2.48430(14) | 2.58032(14) | 112.805(3) | 106.633(3) | 110.446(3) | 110.634(7) | 109.587(3) |
| 107.540(7) | 108.893(3) | 109.021(7) | ||||||
| 0.95 | 0.2285370(0) | 2.44849(4) | 2.59204(4) | 114.366(1) | 105.095(1) | 110.781(1) | 111.520(2) | 109.433(1) |
| 106.882(2) | 108.457(1) | 109.053(2) | ||||||
Fig. 5 Schematic of phase formation in CuIn(SexTe1-x)2. Dark vertical lines are just markers. Grey vertical lines represent percentage (lengthwise) of the phases
Fig. 8 Raman spectra of a CuIn(Se0.1Te0.9)2 and b CuIn(Se0.5Te0.5)2, the symbols, lines and dark line show the experimental data, individual Lorentzians and the overall fit, respectively
Fig. 10 Results of A 1 mode analysis for CuIn(SexTe1-x)2, the average force constants for the calculations are taken from the results of the Rietveld refinement
| Selenium content (x) | Raman shift (cm-1) | FWHM (cm-1) | |
|---|---|---|---|
| Observed | Calculated | ||
| 0.10 | 130.6 | 129.8 | 3.8 |
| 0.18 | 132.8 | 133.0 | 4.8 |
| 0.25 | 136.6 | 136.0 | 13.5 |
| 0.33 | 139.3 | 138.9 | 6.7 |
| 0.35 | 143.7 | 140.0 | 7.2 |
| 0.40 | 147.0 | 143.2 | 6.8 |
| 0.49 | 147.1 | 147.4 | 11.1 |
| 0.55 | 149.3 | 150.4 | 6.2 |
| 0.62 | 154.0 | 154.4 | 7.8 |
| 0.68 | 152.9 | 157.4 | 8.6 |
| 0.74 | 161.6 | 161.4 | 12.3 |
| 0.77 | 159.4 | 161.9 | 7.2 |
| 0.83 | 165.4 | 168.1 | 7.1 |
| 0.87 | 165.1 | 169.8 | 9.8 |
| 0.95 | 174.2 | 174.9 | 9.8 |
Table 5 Observed and calculated Raman shift for the A 1 mode for different phases, denoted by Se content (x)
| Selenium content (x) | Raman shift (cm-1) | FWHM (cm-1) | |
|---|---|---|---|
| Observed | Calculated | ||
| 0.10 | 130.6 | 129.8 | 3.8 |
| 0.18 | 132.8 | 133.0 | 4.8 |
| 0.25 | 136.6 | 136.0 | 13.5 |
| 0.33 | 139.3 | 138.9 | 6.7 |
| 0.35 | 143.7 | 140.0 | 7.2 |
| 0.40 | 147.0 | 143.2 | 6.8 |
| 0.49 | 147.1 | 147.4 | 11.1 |
| 0.55 | 149.3 | 150.4 | 6.2 |
| 0.62 | 154.0 | 154.4 | 7.8 |
| 0.68 | 152.9 | 157.4 | 8.6 |
| 0.74 | 161.6 | 161.4 | 12.3 |
| 0.77 | 159.4 | 161.9 | 7.2 |
| 0.83 | 165.4 | 168.1 | 7.1 |
| 0.87 | 165.1 | 169.8 | 9.8 |
| 0.95 | 174.2 | 174.9 | 9.8 |
| 1. | S. Siebentritt, U. Rau (eds.), Wide-Gap Chalcopyrites (Springer, Berlin, 2006) |
| 2. | P.Y. Yu, D.H.C.M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010) |
| 3. | D. Xue, K. Betzler, H. Hesse,Phys. Rev. B 62, 13546(2000) |
| 4. | D.N. Nikogosian, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005) |
| 5. | P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla,Prog. Photovolt. 19, 894(2011) |
| 6. | S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, W.N. Shafarman,Appl. Phys. Lett. 81, 1350(2002) |
| 7. | K. Yamada, N. Hoshino, T. Nakada,Sci. Technol. Adv. Mater. 7, 42(2006) |
| 8. | V. Izquierdo-Roca, X. Fontane, J. Alvarez-Garcia, L. Calvo-Barrio, A. Perez-Rodriguez, J.R. Morante, C.M. Ruiz, E. Saucedo, V. Bermudez,Appl. Phys. Lett. 94, 061915(2009) |
| 9. | I.H. Choi, S.H. Eom, P.Y. Yu,J. Appl. Phys. 87, 3815(2000) |
| 10. | R. Diaz, M. Leon, F. Rueda,J. Vac. Sci. Technol. A 10, 295(1992) |
| 11. | R. Herberholz, M.J. Carter,Sol. Energy Mater. Sol. Cells 44, 357(1996) |
| 12. | I.V. Bodnar, N.P. Solovei, V.S. Gurin, A.P. Molochko,Semiconductors 38, 1402(2004) |
| 13. | B.R. Pamplin, T. Kiyosawa, K. Masumoto,Prog. Cryst. Growth Charact. Mater. 1, 331(1979) |
| 14. | J.E. Avon, K. Yoodee, J.C. Woolley,J. Appl. Phys. 55, 524(1984) |
| 15. | S. Chatraphorn, T. Panmatarite, S. Pramatus, A. Prichavudhi, R. Kritayakirana, J. Berananda, V. Sa-yakanit, J.C. Woolley,J. Appl. Phys. 57, 1791(1985) |
| 16. | C.H. Champnes,J. Mater. Sci. Mater. Electron. 1, 605(1999) |
| 17. | A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), (Report LAUR 86-748),Los Alamos National Laboratory, 2004 |
| 18. | G. Masse, K. Djessas, L. Yarzhou,J. Appl. Phys. 74, 1376(1993) |
| 19. | R.A. Young (ed.), The Rietveld Method (IUCr Monograph on Crystallography, No. 5) (Oxford University Press, New York, 1993) |
| 20. | M. Leon, J.M. Merino, G. Van Tendeloo,Acta Microsc. 18, 128(2009) |
| 21. | N.F.M.Henry, K. Lonsdale (eds.), International Tables for X-Ray Crystallography, Vol. I. Symmetry Groups (The Kynoch Press, Birmingham, 1965) |
| 22. | S.R. Hall, J.M. Stewart,Acta Crystallogr. Sect. B Struct. Sci. 29, 579(1973) |
| 23. | T.R. Anantharaman, C. Suryanarayana,J. Mater. Sci. 6, 1111(1971) |
| 24. | W.D. Callister Jr, Fundamental of Materials Science and Engineering (Wiley, New York, 2001) |
| 25. | G.H. Chapman, J. Shewchun, J.J. Loferski, B.K. Garside, R. Beaulieu,Appl. Phys. Lett. 34, 735(1979) |
| 26. | J.E. Avon, J.C. Woolley,J. Appl. Phys. 52, 6423(1981) |
| 27. | B. Pamplin, R.S. Feigelson,Thin Solid Films 60, 141(1979) |
| 28. | M. Quintero, J.C. Woolley,J. Appl. Phys. 55, 2825(1984) |
| 29. | P. Grima, M. Quintero, C. Rincon, G.S. Peres, J.C. Woolley,Solid State Commun. 67, 81(1988) |
| 30. | M. Quintero, R. Tovar, E. Guerrero, F. Sanchez, J.C. Woolley,Phys. Status Solidi A 125, 161(1991) |
| 31. | L.P. Marushko, Y.E. Romanyuk, L.V. Piskach, O.V. Parasyuk, I.D. Olekseyuk, S.V. Volkov, V.I. Pekhnyo,Chem. Met. Alloys 3, 18(2010) |
| 32. | I.V. Bodnar, I.A. Zabelina, B.V. Korzun, A.P.Chernyakova, Zh Neorg, Khim. 36, 1062(1991) |
| 33. | L.S. Palatnik, E.I. Rogacheva,Sov. Phys. Dokl. 12, 503(1967) |
| 34. | I.P. Kaminow, E. Buehler, J.H. Wernick,Phys. Rev. B 2, 960(1970) |
| 35. | G.D. Holah, A.A. Schenk, S. Perkowitz, R.D. Tomlinson,Phys. Rev. B 23, 6288(1981) |
| 36. | H. Neumann,Helv. Phys. Acta 58, 337(1985) |
| 37. | P.N. Keating,Phys. Rev. 149, 674(1966) |
| 38. | V. Kumar, D. Chandra,Phys. Status Solidi B 212, 37(1999) |
| 39. | D. Papadimitriou, N. Esser, C. Xue,Phys. Status Solidi B 242, 2633(2005) |
| 40. | L. Genzel, W. Bauhofer,Z. Phys. B 25, 13(1976) |
| 41. | E. Oh, A.K. Ramdas,J. Electron. Mater. 23, 307(1994) |
| 42. | I.F. Chang, S.S.Mitra, Adv. Phys. 20, 359(1971) |
| 43. | H. Matsushita, S. Endo, T. Irie,Jpn. J. Appl. Phys. 31, 18(1992) |
| 44. | I.V. Bodnar,Semiconductors 32, 613(1998) |
| 45. | K. Takarabe, K. Kawai, K. Wakamura, S. Minomura, N. Yamamoto,J. Cryst. Growth 99, 766(1990) |
| 46. | I.V. Bodnar,J. Appl. Spectrosc. 66, 928(1999) |
| 47. | H. Tanino, H. Deai, H. Nakanishi,Jpn. J. Appl. Phys. 32, 436(1993) |
| 48. | Y. Cui, U.N. Roy, P. Bhattacharya, A. Parker, A. Burger, J.T. Goldstein,Solid State Commun. 150, 1686(2010) |
| 49. | I.V. Bodnar, G.F. Smirnova, A.G. Karoza, A.P. Chernyakova,Phys. Status Solidi B 158, 469(1990) |
| 50. | R. Bacewicz, W. Gebicki, J. Filipowicz,J. Phys. Condens. Matter 6, L777(1994) |
| 51. | S. Shirakata, T. Terasako, T. Kariya,J. Phys. Chem. Solids 66, 1970 (2005) |
| 52. | A. Anastassiadou, E. Liarokapis, E. Anastassakis,Solid State Comm. 69, 137(1989) |
| 53. | L.A. Farrow, J.M. Worlock, F. Turco-Sandroff, R.E. Nahory, R. Beserman, D.M. Hwang,Phys. Rev. B 45, 1231(1992) |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
