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Theoretical study of the elastic properties of titanium nitride
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The equilibrium lattice parameter, relative volume V/V0, elastic constants Cij , and
bulk modulus of titanium nitride are successfully obtained using the ab initio plane-
wave pseudopotential (PW-PP) method within the framework of density functional
theory. The quasi-harmonic Debye model, using a set of total energy vs molar volume
obtained with the PW-PP method, is applied to the study of the elastic properties
and vibrational effects. We analyze the relationship between the bulk modulus and
temperature up to 2000 K and obtain the relationship between bulk modulus B and
pressure at different temperatures. It is found that the bulk modulus B increases
monotonously with increasing pressure and decreases with increasing temperature.
Moreover, the Debye temperature is determined from the non-equilibrium Gibbs func-
tions.
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1 Introduction

Like most refractory transition metal nitrides, TiN has a NaCl-type structure (space
group FM-3M). The Ti atom occupies the 1a (0, 0, 0) site, and the N atom occupies
the 1b (0, 0.5, 0) site. It has been widely used as coating owing to its special properties
such as high melting point, high hardness, high corrosion resistance, high specific strength
and metallic conductivity[1−3]. However, TiN coatings are usually subject to high internal
stresses between the coating and the substrate. High internal stress will reduce bonding
strength between the substrate and the coating layer. Only when the elastic constants are
known, the internal stress can be determined by X-ray diffraction. Sometimes, the same
residual stress in the literature may associate with quite different strains. For example,
for the well-known thin film TiN, its Young′s modulus is widely accepted as 640 GPa[4] in
Europe, however, in Japan, the value is 250 GPa[5,6].

The single-crystal elastic constants of solids are essential for the interpreting seismic
wave velocities and their lateral variations. A study of the elastic properties for materials
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is well motivated by, for example, the understanding that one thereby gains about the
chemical bonds and the cohesion of material. Moreover, the elastic constants are also
related to the thermal properties according to the Debye theory. Although there exist
several research efforts in thin films, the bulk properties of TiN at high temperature are
less studied. The aim of this study is to use ab initio calculations for getting a new insight
on the structural and elastic properties of TiN at high temperatures.

2 Theoretical Method

Firstly, we make a first-principle total energy electronic structure calculation. In our
total energy calculation, we use the plane-wave pseudopotential (PW-PP) method[7]. The
generalized gradient approximation of revised-PBE (RPBE)[8] is used for the exchange-
correlation energy functional. The initial convergence test guided the choice of 500 eV
for the energy cutoff, Ecut. For the cubic Brillouin-zone sampling, we use the 12×12×12
mesh[9], which is enough to achieve the self-consistent convergence of the total energy to
4×10−7 eV/atom. All total energy calculations are implemented through the CASTEP
code[10].

Then, a recent developed Debye-like model (quasi-harmonic Debye model)[11] is imple-
mented, and the phononic and the anharmonic effects are also considered. The investiga-
tions of elastic properties in this study are done within the quasi-harmonic Debye theory
of crystals, without making extensive and complicated lattice dynamics calculations. In
this model, the zero pressure bulk modulus B0 is determined by fitting the calculated
energy-volume (E-V ) data to the Birch–Murnaghan EOS[12]
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where, E0 is the equilibrium energy. The pressure p vs the relative volume Vn (=V/V0,
where, V0 is the equilibrium volume at zero pressure) is obtained by
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In addition, the bulk modulus B is also investigated under various pressures and tem-
peratures using the quasi-harmonic Debye model. In the quasi-harmonic Debye model, the
non-equilibrium Gibbs energy G∗(V ; p, T ) of TiN crystal is taken in a form[13]

G∗(V ; p, T ) = E(V ) + pV + Avib(V ;T ) (3)

where, E(V ) is the total energy per unit cell; pV corresponds to the constant hydrostatic
pressure condition. Avib is the vibrational Helmholtz free energy given by the Debye model,
which can be written using the Debye model of the phonon density of states as[14,15]

Avib(ΘD;T ) = nkT
[9
8

ΘD

T
+ 3ln(1− e−ΘD/T )−D(ΘD/T )] (4)

where, ΘD is the Debye temperature, D(ΘD/T ) represents the Debye integral, and n is
the number of atoms per formula unit. The equation of state (EOS) can be obtained by
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minimizing the non-equilibrium Gibbs function with respect to volume V as follows

(∂G∗(V ; p, T )
∂V

)
p,T

= 0 (5)

The isothermal bulk modulus is defined as

B(p, T ) = B(V ) = V
(∂2G∗(V ; p, T )

∂V 2

)
p,T

(6)

Instead of solving the Christoffel equations, isotropic approximation is considered to obtain
the Debye temperature ΘD

[16]
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where, M is the molecular mass of the crystal, h is the Planck′s constant, BS is the adiabatic
bulk modulus, which is approximately calculated by the static compressibility[16,17]

BS ≈ B(V ) = V
[d2E(V )

dV 2

]
(8)

and f(σ) is given in Refs.[18] and [19]. Here, the Poisson′s ratio σ is taken as 0.201[20,21].
It is well known that the elastic constants are calculated by means of Taylor expansion

of the total energy, E(V, δ), for the system with respect to a small strain δ of the cell
volume V . The energy of a strained system is expressed as follows[22]:

E(V, δ) = E(V0, T ) + V0

[∑
τiξiδi +

1
2

∑
Cijτiξiδi

]
(9)

where, E(V0, T ) is the energy of the unstrained system with equilibrium volume V0 at dif-
ferent temperatures, τi is an element in the stress tensor, and ξi is a factor to consider Voigt
index[22]. The total energy E(V0, T ) can be obtained by the quasi-harmonic Debye model.
The three independent elastic constants C11, C12, and C44 are resulted from different kinds
of strains along certain directions. A detailed description of the calculation method has
been reported in Ref.[23].

3 Results and Discussion

In Fig.1, we present the relative volume-
temperature-pressure diagrams of TiN.

The obtained relative cell volume V/V0

dependences on temperature T at different
pressures p are illustrated in Fig.1. It is
noted that as the temperature T increases,
the value V/V0 increases at a given pressure.
The effects of the pressure on the relative vol-
ume V/V0 are very small at low temperatures
and are increasingly obvious as the temper-
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Fig.1 Calculated V/V0-p-T relationships of TiN.
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ature increases. When the temperature
T increases, the curve of V/V0-T becomes
steeper, indicating that the cell volume of
TiN crystal expands considerably easily at
high temperatures and low pressures. The
higher the temperature, the faster the cell
volume increase is.

Now we investigate the dependences of
bulk modulus B on temperature T and pres-
sure p. Using the quasi-harmonic Debye
model mentioned above, the relationship of
the bulk modulus B and the temperature T
is calculated and plotted in Fig.2.
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Fig.2 Bulk modulus B as a function of tem-
perature T at zero pressure.

The calculated bulk modulus B0 is 280.1 GPa (T=0 K) which is consistent with the
experimental data (B0=288 GPa)[24]. From Fig.1, it can be seen that when T<100 K,
B remains nearly constant, and the lattice parameter, a, remains nearly constant. When
T>100 K, the bulk modulus B decreases dramatically as T increases, which indicates
that the cell volume changes rapidly. It is the rapid volume variation that makes the bulk
modulus B0 decrease rapidly. By fitting the B-T data to third-order polynomial, we obtain
the following relationship

B = 281.82507− 2.438× 10−2T − 1.4517× 10−5T 2 + 3.03024× 10−9T 3, for T < 2000 K
(10)

From Eq.( 9), we obtain the slope of B-T curve

K =
(dB

dT

)
p=0

= −2.438× 10−2 − 2.9034× 10−5T + 9.09072× 10−9T 2 (11)

The relationships between bulk modulus
B and pressure p at different temperatures
(T=0, 500, 1000, and 1500 K) are plotted in
Fig.3.

It is noted from Fig.3 that the bulk mod-
ulus B increases with pressure p at a given
temperature and decreases with temperature
T at a given pressure. The dependences
of the bulk modulus B on the pressure are
nearly linear at various temperatures of T=0,
500, 1000, and 1500 K, respectively. It indi-
cates that the effect of increasing pressure on
TiN is the same as the decreasing tempera-
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Fig.3 Pressure dependence of the bulk mod-
ulus of TiN crystal.

ture of the material.
For the cubic structure, there are only three independent elastic constants, namely,

C11, C12, and C44. The zero pressure bulk modulus B0 of cubic structure is given by the
equation

B0 = (C11 + 2C12)/3 (12)

The calculated elastic constants Cij , bulk modulus B0, and lattice parameter a are listed
in Table 1.
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Table 1 Calculated elastic constants/GPa, bulk modulus/GPa, and lattice parameter for TiN

TiN

C11 610[25] 625 (Expt.)[26] 497.8 (Expt.)[20] 600[27]a 598[27]b 589.3 (Calc.)
C12 100 165 128.7 120 118 125.3
C44 168 163 168.1 159 159 160.1
B0 270 318 236.4 280 278 280.0

B0=288 GPa[24]Expt. a=0.425 nm a=0.422 nm[28] a=0.423 nm

Note: a. Obtained by CASTEP code with the Perdew-Wang 1991 GGA functional;
b. Obtained by CASTEP code with the Perdew-Burke-Ernzerhof 1996 GGA functional.

From Table 1, it is known that agreements between experimental data and our calcu-
lated results for lattice parameter a, elastic constants C11, C12, C44, and B0 are excellent.
The calculated B0 consists of the value obtained by the quasi-harmonic Debye model
(B0=280.1 GPa). Another elastic property of TiN is the elastic anisotropy A, which is
defined by the following relation for a cubic crystal[29]

A = 2C44/(C11 − C12) (13)

In Table 2, we present the temperature dependences of elastic constants Cij , bulk
modulus B, and elastic anisotropy A at the temperature interval of 300–1800 K.

From Table 2, it can be found that all elastic constants Cij and bulk moduli decrease
monotonously when the temperature is enhanced. The effect of temperature on the elastic
constants of TiN crystal is large. The elastic constant C11, which corresponds to the
longitudinal wave vp1 propagated along [001], decreases dramatically with the increasing
temperature. C44 decreases very slowly with the elevated temperature, which indicates
that the velocity of shear wave vs1 propagated along [110] or [001] will be slower as the
temperature increases. We can find that the elastic anisotropy factor A for the TiN crystal
increases with the increasing temperature, which indicates that the elastic anisotropy for
TiN crystal will gradually be strengthen with the increasing temperature. The bulk moduli
obtained from the quasi-harmonic Debye model are in agreement with the values obtained
from the elastic constants. Unfortunately, no experimental or theoretical data of elastic
constants are available for our comparison.

Table 2 Elastic constants Cij/GPa, bulk modulus/GPa, and Debye tempera-
ture at high temperatures for TiN at zero pressure

T/K Ba Bb C11 C12 C44 A ΘD/K

300 268.3 261.5 559.4 112.5 157.2 0.7035 579.2
450 263.0 257.5 550.6 111.0 156.7 0.7129 574.5
600 257.1 252.4 539.6 108.9 156.2 0.7253 569.3
750 251.6 247.9 529.0 107.4 155.5 0.7376 563.9
900 245.8 242.1 516.5 104.8 154.6 0.7510 558.3

1050 239.7 238.9 506.2 105.3 153.9 0.7678 552.7
1200 233.1 231.8 491.8 101.8 153.2 0.7856 546.8
1350 227.1 227.2 479.7 101.0 152.4 0.8048 540.7
1500 220.7 222.2 467.5 99.6 151.7 0.8246 534.6
1650 214.0 213.8 451.1 95.2 150.9 0.8480 528.2
1800 208.1 209.8 439.4 95.0 149.9 0.8705 521.6

Note: a. Obtained from the quasi-harmonic Debye model;
b. Obtained from the elastic constants.
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Another fundamental parameter of solids is the Debye temperature ΘD, which is closely
related to specific heat, elastic constants, thermal coefficients, and rigidity. At 300 K, we
obtain the Debye temperature ΘD=579.2 K, which is in excellent agreement with the ex-
perimental data ((580±20) K[30]). From Table 2, it can be seen that the Debye temperature
ΘD decreases with temperature T . As the temperature increases, the Debye temperature
ΘD decreases more quickly when T>600 K than at low temperature region.

4 Conclusion

In summary, the temperature dependence of bulk modulus, relative volume V/V0, elas-
tic constants Cij , and Debye temperature of TiN are obtained using the ab initio plane-
wave pseudopotential (PW-PP) method. The temperature effects have been defined using
the quasi-harmonic Debye model exploiting the total energy calculations. It is found that
the bulk modulus B is nearly a constant when T<100 K, whereas it decreases dramati-
cally with the increment of temperature T when T>100 K. The bulk modulus B increases
monotonously as the pressure increases. Moreover, the temperature dependence of Debye
temperature is also successfully obtained. The Debye temperature decreases with T at low
temperatures and gradually approaches a linear increase at high temperatures, and then
the increasing trend becomes steeper. Our study on the properties of TiN will be helpful
for further understanding of TiN crystal.
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