Please wait a minute...
Acta Metallurgica Sinica(English letters)  2019, Vol. 32 Issue (12): 1490-1500    DOI: 10.1007/s40195-019-00918-y
Orginal Article Current Issue | Archive | Adv Search |
Oxidation Performance and Interdiffusion Behavior of a Pt-Modified Aluminide Coating with Pre-deposition of Ni
He Liu1,2, Shuai Li1,2, Cheng-Yang Jiang3, Chun-Tang Yu1,2, Ze-Bin Bao1(), Sheng-Long Zhu1, Fu-Hui Wang3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science,Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(3357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To refrain the interdiffusion of elements while holding good oxidation resistance, a (Ni,Pt)Al/Ni composite coating was prepared by sequential treatments of electroplating Ni and Pt and successive gaseous aluminization. In comparison with normal (Ni,Pt)Al coating, high-temperature performance of the composite coating was evaluated in isothermal oxidation test at 1100 °C. Both the two coatings exhibited good resistance against high-temperature oxidation, but the interdiffusion of elements between composite coating and single-crystal (SC) superalloy substrate was greatly relieved, in which the thickness of secondary reaction zone (SRZ) and the amount of precipitated topologically close-packed phase in the SC alloy matrix were significantly decreased. Mechanisms responsible for delaying rate of coating degradation and SRZ growth/propagation are discussed.

Key words:  Aluminide coating      Oxidation      Interdiffusion      Microstructure     
Received:  07 March 2019      Published:  25 November 2019

Cite this article: 

He Liu, Shuai Li, Cheng-Yang Jiang, Chun-Tang Yu, Ze-Bin Bao, Sheng-Long Zhu, Fu-Hui Wang. Oxidation Performance and Interdiffusion Behavior of a Pt-Modified Aluminide Coating with Pre-deposition of Ni. Acta Metallurgica Sinica(English letters), 2019, 32(12): 1490-1500.

URL: 

http://www.amse.org.cn/EN/10.1007/s40195-019-00918-y     OR     http://www.amse.org.cn/EN/Y2019/V32/I12/1490

Parameter Value
NiSO4·6H20 150-200 g L-1
NaCl 8-10 g L-1
H2BO3 20-30 g L-1
Na2SO4 50-80 g L-1
C12H25NaSO4 0.1 g L-1
pH value 5
Temperature 55 °C
Current density 0.5-1 A dm-2
Table 1  Parameters for Ni pre-deposition by electroplating technique
Fig. 1  XRD patterns of β-(Ni,Pt)Al coating specimens with and without Ni pre-deposition
Fig. 2  Surface and cross-sectional morphologies of as-received (Ni,Pt)Al (a, c) and (Ni,Pt)Al/Ni coatings (b, d)
Al Ni Pt Cr Co
(Ni,Pt)Al 41.58 46.24 5.34 2.26 4.58
(Ni,Pt)Al/Ni 42.91 51.56 5.52
Table 2  Coating compositions measured at the region 5 μm to the surface of the two coatings in as-received state (at.%)
Fig. 3  Mass gain (Δw) (a) and square of mass gain (b) of (Ni,Pt)Al and (Ni,Pt)Al/Ni coating specimens during isothermal oxidation test at 1100 °C
Fig. 4  XRD patterns for (Ni,Pt)Al and (Ni,Pt)Al/Ni coatings after isothermal oxidation test at 1100 °C for 1000 h
Fig. 5  Cross-sectional morphologies of (Ni,Pt)Al (a) and (Ni,Pt)Al/Ni (b) coating specimens after isothermal oxidation test at 1100 °C for 1000 h
Al Ni Pt Cr Co
(Ni,Pt)Al 26.61 60.45 4.99 3.36 4.6
(Ni,Pt)Al/Ni 33.6 54.59 5.41 3.08 3.33
Table 3  Coating compositions measured at the region 5 μm to the surface of the two coatings after isothermal oxidation at 1100 °C for 1000 h (at.%)
Fig. 6  Interdiffusion zone evolution of normal β-(Ni,Pt)Al coating specimen during isothermal oxidation test at 1100 °C for a 0 h, b 20 h, c 500 h
Fig. 7  Interdiffusion zone evolution of (Ni,Pt)Al/Ni composite coating during isothermal oxidation test at 1100 °C for a 0 h, b 20 h, c 500 h
Fig. 8  Elemental mappings of (Ni,Pt)Al coating specimen after isothermal oxidation at 1100°C for 500 h
Fig. 9  Elemental mappings of (Ni,Pt)Al/Ni coating specimen after isothermal oxidation test at 1100°C for 500 h
Fig. 10  Evolution of SRZ thickness for (Ni,Pt)Al/Ni and (Ni,Pt)Al coating specimens during isothermal oxidation test
Fig. 11  Schematic illustration showing evolution of SRZ developed below normal (Ni,Pt)Al coating
Fig. 12  Schematic illustration showing evolution of SRZ developed below (Ni,Pt)Al/Ni coating
[1] M.J. Pomeroy, Mater. Des. 26, 223(2005)
doi: 10.1016/j.matdes.2004.02.005
[2] J.H. Sun, H.C. Jang, E. Chang, Surf. Coat. Technol. 64, 195(1994)
doi: 10.1016/0257-8972(94)90107-4
[3] R.G. Wing, I.R. Mcgill, Plat. Eng. 53, 15(1981)
[4] S. Darzens, D.R. Mumm, D.R. Clarke, A.G. Evans, Metall. Mater. Trans. A 34, 511 (2003)
[5] S.K. Gong, L. Deng, F.S. Liu, H.B. Xu, Acta Metall. Sin. (Engl. Lett.) 9, 519(1996)
[6] E.J. Felten, F.S. Pettit, Oxid. Met. 10, 189(1976)
doi: 10.1007/BF00612159
[7] J.G. Fountain, F.A. Golightly, F.H. Stott, G.C. Wood, Oxid. Met. 10, 341(1976)
doi: 10.1007/BF00612031
[8] D.K. Das, V. Singh, S.V. Joshi, Oxid. Met. 57, 245(2001)
doi: 10.1023/A:1014822217982
[9] G.H. Meier, F.S. Pettit, Surf. Coat. Technol. 39, 1(1989)
[10] H.M. Tawancy, N.M. Abbas, T.N. Rhys-Jones, Surf. Coat. Technol. 49, 1(1991)
doi: 10.1016/0257-8972(91)90022-O
[11] H.M. Tawancy, N. Sridhar, B.S. Tawabini, N.M. Abbas, T.N. Rhys-Jones, J. Mater. Sci. 27, 6463(1992)
doi: 10.1007/BF00576299
[12] H.M. Tawancy, N. Sridhar, N.M. Abbas, D. Rickerby, Scr. Metall. Mater. 33, 1431(1995)
[13] J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, Oxid. Met. 58, 513(2002)
doi: 10.1023/A:1020525123056
[14] Y. Zhang, W.Y. Lee, J.A. Haynes, I.G. Wright, B.A. Pint, K.M. Cooley, P.K. Liaw, Metall. Mater. Trans. A 30, 2679 (1999)
[15] C. Leyens, B.A. Pint, I.G. Wright, Surf. Coat. Technol. 133, 15(2000)
[16] V.K. Tolpygo, D.R. Clarke, Scr. Mater. 57, 563(2007)
[17] V.K. Tolpygo, K.S. Murphy, D.R. Clarke, Acta Mater. 56, 489(2008)
doi: 10.1016/j.actamat.2007.10.006
[18] M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel, K.J. Hemker, Acta Mater. 51, 4279(2003)
doi: 10.1016/S1359-6454(03)00255-6
[19] J. Angenete, K. Stiller, E. Bakchinova, Surf. Coat. Technol. 176, 272(2004)
[20] D. Wang, H. Peng, S.K. Gong, H.B. Guo, Corros. Sci. 78, 304(2014)
[21] B. Bai, H.B. Guo, H. Peng, L.Q. Peng, S.K. Gong, Corros. Sci. 53, 2721(2011)
[22] D.K. Das, K.S. Murphy, S.W. Ma, T. Pollock, Metall. Mater. Trans. A 39, 1647 (2008)
[23] Y. Matsuoka, K. Chikugo, T. Suzuki, Y. Matsunaga, S. Taniguchi, Mater. Sci. Forum 512, 111 (2006)
[24] F. Lang, T. Narita, Intermetallics 15, 599 (2007)
[25] F. Wu, H. Murakami, A. Suzuki, Surf. Coat. Technol. 168, 62(2003)
[26] Y. Wang, H.B. Guo, H. Peng, L.Q. Peng, S.K. Gong, Intermetallics 19, 191 (2011)
[27] Z.M. Bai, D.Q. Li, H. Peng, J. Wang, H.B. Guo, S.K. Gong, Prog. Nat. Sci. Mater. Int. 146, 37(2012)
[28] L.J. Zhu, S.L. Zhu, F.H. Wang, Corros. Sci. 60, 265(2012)
[29] J. Müller, M. Schierling, E. Zimmermann, D. Neuschütz, Surf. Coat. Technol. 120, 16(1999)
[30] T.Q. Liang, H.B. Guo, H. Peng, S.K. Gong, J. Alloys Compd. 509, 8542(2011)
[31] Y.F. Yang, C.Y. Jiang, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 106, 43(2016)
[32] Y. Matsuoka, Y. Aoki, K. Matsumoto, A. Satou, T. Suzuki, K. Chikugo, K. Murakami, Superalloys 12(637), 637-642 (2004)
[33] J.D. Nystrom, T.M. Pollock, W.H. Murphy, A. Garg, Metall. Mater. Trans. A 28, 2443 (1997)
[34] Q.Y. Shi, X.F. Ding, M.L. Wang, Y.R. Zheng, J.P. He, S. Tin, Q. Feng, Metall. Mater. Trans. A 45, 1833 (2013)
[35] V.A. Esin, V. Maurel, P. Breton, A. Köster, S. Selezneff, Acta Mater. 105, 505(2016)
[36] F. Pedraza, A.D. Kennedy, J. Kopecek, P. Moretto, Surf. Coat. Technol. 200, 4032(2006)
[37] T.Q. Liang, H.B. Guo, H. Peng, S.K. Gong, Surf. Coat. Technol. 205, 4374(2011)
[38] W. Huang, Y.A. Chang, Mater. Sci. Eng. A 259, 110 (1999)
[39] M. Reid, M.J. Pomeroy, J.S. Robinson, J. Mater. Process. Technol. 153, 660(2004)
[40] D.B. Zhang, S.K. Gong, H.B. Xu, Y.F. Han, Acta Metall. Sin. (Engl. Lett.) 15, 45(2002)
[41] C.M.F. Rae, R.C. Reed, Acta Mater. 49, 4113(2001)
doi: 10.1016/S1359-6454(01)00265-8
[42] J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 465, 100 (2007)
[1] Xiao Wang, Fei Lv, Li-Da Shen, Hui-Xin Liang, De-Qiao Xie, Zong-Jun Tian. Influence of Island Scanning Strategy on Microstructures and Mechanical Properties of Direct Laser-Deposited Ti-6Al-4V Structures[J]. 金属学报英文版, 2019, 32(9): 1173-1180.
[2] Jian-Guo Chen, Chen-Xi Liu, Chen Wei, Yong-Chang Liu, Hui-Jun Li. Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel[J]. 金属学报英文版, 2019, 32(9): 1151-1160.
[3] Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys[J]. 金属学报英文版, 2019, 32(9): 1053-1064.
[4] Shuang-Jian Chen, Xiang-Xi Ye, D.K. L.Tsang, Li Jiang, Chao-Wen Li, Kun Yu, Zhi-Jun Li . Microstructure and Its Influence on the Mechanical Properties of Ni-28W-6Cr-Based Alloy-Welded Joints by GTAW[J]. 金属学报英文版, 2019, 32(8): 1032-1040.
[5] Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel[J]. 金属学报英文版, 2019, 32(8): 1021-1031.
[6] Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder[J]. 金属学报英文版, 2019, 32(8): 1007-1014.
[7] Li Ye-Fan, Li Chong, Wu Jing, Li Hui-Jun, Liu Yong-Chang, Wang Hai-Peng. Microstructural Feature and Evolution of Rapidly Solidified Ni3Al-Based Superalloys[J]. 金属学报英文版, 2019, 32(6): 764-770.
[8] Barros André, Cruz Clarissa, P. Silva Adrina, Cheung Noé, Garcia Amauri, Rocha Otávio, Moreira Antonio. Horizontally Solidified Al-3 wt%Cu-(0.5 wt%Mg) Alloys: Tailoring Thermal Parameters, Microstructure, Microhardness, and Corrosion Behavior[J]. 金属学报英文版, 2019, 32(6): 695-709.
[9] Chen Wang, Bei-Bei Wang, Dong Wang, Peng Xue, Quan-Zhao Wang, Bo-Lv Xiao, Li-Qing Chen, Zong-Yi Ma. High-Speed Friction Stir Welding of SiCp/Al-Mg-Si-Cu Composite[J]. 金属学报英文版, 2019, 32(6): 677-683.
[10] Xin-Tong Lian, Wen-Ru Sun, Fang Liu, Dan-Dan Zheng, Xin Xin. Effects of Phosphorus and Iron on Microstructures and Mechanical Properties in NiCrFe-Based Alloys[J]. 金属学报英文版, 2019, 32(5): 659-667.
[11] Fumio Ogawa, Shuji Yamamoto, Chitoshi Masuda. Thermal Conductivity and Tensile Properties of Carbon Nanofiber-Reinforced Aluminum-Matrix Composites Fabricated via Powder Metallurgy: Effects of Ball Milling and Extrusion Conditions on Microstructures and Resultant Composite Properties[J]. 金属学报英文版, 2019, 32(5): 573-584.
[12] Pei-Lin Zhang, Yu-Hong Zhao, Ruo-Peng Lu, Zhi-Bing Ding, Hua Hou. Microalloying Effect of Sn on Phase Transformation During Heat Treatment in Mg-Y-Zn-Zr Alloys[J]. 金属学报英文版, 2019, 32(5): 550-558.
[13] Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel[J]. 金属学报英文版, 2019, 32(4): 517-525.
[14] Bao-Biao Yu, Hong Yan, Jian-Bin Zhu, Jian-Long Liu, Huo-Gen Li, Qiao Nie. Effects of La on Microstructure and Corrosion Behavior of AlSi5Cu1Mg Alloy[J]. 金属学报英文版, 2019, 32(4): 443-451.
[15] Sohail Ahmad, Li-Feng Lv, Li-Ming Fu, Huan-Rong Wang, Wei Wang, Ai-Dang Shan. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling[J]. 金属学报英文版, 2019, 32(3): 361-371.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.