Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (11): 1047-1052.DOI: 10.1007/s40195-016-0478-y

Special Issue: 2016纳米材料专辑

• Orginal Article • Previous Articles     Next Articles

Microstructure and Nano-hardness of Pure Copper and ODS Copper Alloy under Au Ions Irradiation at Room Temperature

Jing Zhang,Yong-Qin Chang(),Zhi-Meng Guo,Ping-Ping Liu,Yi Long,Fa-Rong Wan   

  1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2016-04-09 Published:2016-11-21

Abstract:

The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened (ODS) copper alloy subjected to 1.4 MeV Au ions irradiation at room temperature were investigated. After irradiation, dislocation-loops form in both materials, while voids can only be generated in the pure copper. Compared with the irradiated pure copper, larger average diameter and lower number density of irradiation-induced dislocation-loops were detected in the ODS copper alloy, revealing that high-density dislocation and large volume of Al2O3 particles existing in the ODS copper alloy can act as effective sinks for the irradiation-induced defects. It was also detected that irradiation hardening in the ODS copper alloy is lower than that in the pure copper. The microstructure and nano-hardness results reveal that the ODS copper alloy has a better irradiation tolerance than the pure copper. In addition, the average diameter of the Al2O3 particles in the ODS copper alloy decreases after irradiation, because the Al-O chemical bonds are decomposed and the atoms are redistributed in the matrix during the irradiation process. This work reveals that the irradiation tolerance of the copper can be effectively enhanced by adding nano-sized Al2O3 particles into the matrix.

Key words: Oxide, dispersion-strengthened, copper, alloyIons, irradiationMicrostructure, evolutionNano-hardness